摘要
Kafka是由LinkedIn开发并开源的分布式消息系统,因其分布式及高吞吐率而被广泛使用,现已与Cloudera Hadoop,Apache Storm,Apache Spark集成。本文介绍了Kafka的创建背景,设计目标,使用消息系统的优势以及目前流行的消息系统对比。并介绍了Kafka的架构,Producer消息路由,Consumer Group以及由其实现的不同消息分发方式,Topic & Partition,最后介绍了Kafka Consumer为何使用pull模式以及Kafka提供的三种delivery guarantee。
Kafka简介
kafka是一种分布式的,基于发布/订阅的消息系统.主要的设计目标如下:
- 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间复杂度的性能访问.
- 高吞吐率.即使在非常廉价的商用机器上也能做到单机支持每秒100K条以上的消息传输
- 支持Kafka Server 间的消息分区,及分布式消费,同时保证每个Partition内的消息顺序传输
- 支持离线数处理和实时数据处理
- Scala out. 支持在线水平扩展
为何使用消息系统
- 解耦
- 冗余
- 扩展性
- 灵活性 & 峰值处理能力
- 可恢复性
- 顺序保证
- 缓冲
- 异步通信
Kafka架构
- Borker
Kafka集群包含一个或多个服务器,这种服务器被称为Broker
- Topic
每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic(物理上不同的Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上,但是用户只需要指定消息的Topic即可产生或消费数据而不必关心数据存储何处)
- Partition
Partition是物理上的概念,每一个Topic包含一个或多个Partition
- Producer
负责发送消息到Kafka broker上
- Consumer
消息消费者,向Kafka broker读取消息的客户端
- Consumer Group
每一个Consumer属于一个特定的Consumer Group(可以为每一个Consumer指定Group name,若不指定 group name 则属于默认的group)
一个典型的Kafka集群包含若干个Producer(可以是Web端产生的Page View 或者是服务器日志,系统CPU,Memory等)若干个broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高).若干个Consumer Group 以及一个Zookeeper集群.Kafka 通过Zookeeper管理集群配置,选举Leader,以及在Consumer Group发生变化的时候进行rebalance. Producer 使用push模式将消息发布到broker,Consumer 使用pull模式从Broker订阅并消费消息.
过期数据清理
Kafka将数据持久化到了硬盘上,允许配置一定的策略对数据进行清理.清理策略有两个删除和压缩
删除
log.cleanup.policy=delete
启用删除策略,直接删除,删除后的消息不可恢复。可配置以下两个策略:
- 清理超过指定时间的时间清理
log.retention.hour=16
- 超过指定大小后,删除就消息
log.retention.bytes=1073741824
为了避免在删除时候阻塞读写操作,采用copy-on-write的形式实现.
压缩
将数据压缩,只保留每个key最后一个版本的数据。
- 在broker中配置
log.cleaner.enable=true
启用cleaner,默认是关闭的 - 在topic中设置
log.cleanup.policy=compact
启用压缩
压缩策略支持删除,当某个Key的最新版本没有消息内容时,这个Key将被删除
相关参数
############################ System #############################
#唯一标识在集群中的ID,要求是正数。
broker.id=0
#服务端口,默认9092
port=9092
#监听地址,不设为所有地址
host.name=debugo01
# 处理网络请求的最大线程数
num.network.threads=2
# 处理磁盘I/O的线程数
num.io.threads=8
# 一些后台线程数
background.threads = 4
# 等待IO线程处理的请求队列最大数
queued.max.requests = 500
# socket的发送缓冲区(SO_SNDBUF)
socket.send.buffer.bytes=1048576
# socket的接收缓冲区 (SO_RCVBUF)
socket.receive.buffer.bytes=1048576
# socket请求的最大字节数。为了防止内存溢出,message.max.bytes必然要小于
socket.request.max.bytes = 104857600
############################# Topic #############################
# 每个topic的分区个数,更多的partition会产生更多的segment file
num.partitions=2
# 是否允许自动创建topic ,若是false,就需要通过命令创建topic
auto.create.topics.enable =true
# 一个topic ,默认分区的replication个数 ,不能大于集群中broker的个数。
default.replication.factor =1
# 消息体的最大大小,单位是字节
message.max.bytes = 1000000
############################# ZooKeeper #############################
# Zookeeper quorum设置。如果有多个使用逗号分割
zookeeper.connect=debugo01:2181,debugo02,debugo03
# 连接zk的超时时间
zookeeper.connection.timeout.ms=1000000
# ZooKeeper集群中leader和follower之间的同步实际
zookeeper.sync.time.ms = 2000
############################# Log #############################
#日志存放目录,多个目录使用逗号分割
log.dirs=/var/log/kafka
# 当达到下面的消息数量时,会将数据flush到日志文件中。默认10000
#log.flush.interval.messages=10000
# 当达到下面的时间(ms)时,执行一次强制的flush操作。interval.ms和interval.messages无论哪个达到,都会flush。默认3000ms
#log.flush.interval.ms=1000
# 检查是否需要将日志flush的时间间隔
log.flush.scheduler.interval.ms = 3000
# 日志清理策略(delete|compact)
log.cleanup.policy = delete
# 日志保存时间 (hours|minutes),默认为7天(168小时)。超过这个时间会根据policy处理数据。bytes和minutes无论哪个先达到都会触发。
log.retention.hours=168
# 日志数据存储的最大字节数。超过这个时间会根据policy处理数据。
#log.retention.bytes=1073741824
# 控制日志segment文件的大小,超出该大小则追加到一个新的日志segment文件中(-1表示没有限制)
log.segment.bytes=536870912
# 当达到下面时间,会强制新建一个segment
log.roll.hours = 24*7
# 日志片段文件的检查周期,查看它们是否达到了删除策略的设置(log.retention.hours或log.retention.bytes)
log.retention.check.interval.ms=60000
# 是否开启压缩
log.cleaner.enable=false
# 对于压缩的日志保留的最长时间
log.cleaner.delete.retention.ms = 1 day
# 对于segment日志的索引文件大小限制
log.index.size.max.bytes = 10 * 1024 * 1024
#y索引计算的一个缓冲区,一般不需要设置。
log.index.interval.bytes = 4096
############################# replica #############################
# partition management controller 与replicas之间通讯的超时时间
controller.socket.timeout.ms = 30000
# controller-to-broker-channels消息队列的尺寸大小
controller.message.queue.size=10
# replicas响应leader的最长等待时间,若是超过这个时间,就将replicas排除在管理之外
replica.lag.time.max.ms = 10000
# 是否允许控制器关闭broker ,若是设置为true,会关闭所有在这个broker上的leader,并转移到其他broker
controlled.shutdown.enable = false
# 控制器关闭的尝试次数
controlled.shutdown.max.retries = 3
# 每次关闭尝试的时间间隔
controlled.shutdown.retry.backoff.ms = 5000
# 如果relicas落后太多,将会认为此partition relicas已经失效。而一般情况下,因为网络延迟等原因,总会导致replicas中消息同步滞后。如果消息严重滞后,leader将认为此relicas网络延迟较大或者消息吞吐能力有限。在broker数量较少,或者网络不足的环境中,建议提高此值.
replica.lag.max.messages = 4000
#leader与relicas的socket超时时间
replica.socket.timeout.ms= 30 * 1000
# leader复制的socket缓存大小
replica.socket.receive.buffer.bytes=64 * 1024
# replicas每次获取数据的最大字节数
replica.fetch.max.bytes = 1024 * 1024
# replicas同leader之间通信的最大等待时间,失败了会重试
replica.fetch.wait.max.ms = 500
# 每一个fetch操作的最小数据尺寸,如果leader中尚未同步的数据不足此值,将会等待直到数据达到这个大小
replica.fetch.min.bytes =1
# leader中进行复制的线程数,增大这个数值会增加relipca的IO
num.replica.fetchers = 1
# 每个replica将最高水位进行flush的时间间隔
replica.high.watermark.checkpoint.interval.ms = 5000
# 是否自动平衡broker之间的分配策略
auto.leader.rebalance.enable = false
# leader的不平衡比例,若是超过这个数值,会对分区进行重新的平衡
leader.imbalance.per.broker.percentage = 10
# 检查leader是否不平衡的时间间隔
leader.imbalance.check.interval.seconds = 300
# 客户端保留offset信息的最大空间大小
offset.metadata.max.bytes = 1024
#############################Consumer #############################
# Consumer端核心的配置是group.id、zookeeper.connect
# 决定该Consumer归属的唯一组ID,By setting the same group id multiple processes indicate that they are all part of the same consumer group.
group.id
# 消费者的ID,若是没有设置的话,会自增
consumer.id
# 一个用于跟踪调查的ID ,最好同group.id相同
client.id = <group_id>
# 对于zookeeper集群的指定,必须和broker使用同样的zk配置
zookeeper.connect=debugo01:2182,debugo02:2182,debugo03:2182
# zookeeper的心跳超时时间,超过这个时间就认为是无效的消费者
zookeeper.session.timeout.ms = 6000
# zookeeper的等待连接时间
zookeeper.connection.timeout.ms = 6000
# zookeeper的follower同leader的同步时间
zookeeper.sync.time.ms = 2000
# 当zookeeper中没有初始的offset时,或者超出offset上限时的处理方式 。
# smallest :重置为最小值
# largest:重置为最大值
# anything else:抛出异常给consumer
auto.offset.reset = largest
/*
kafka + zookeeper,当消息被消费时,会向zk提交当前groupId的consumer消费的offset信息,当consumer再次启动将会从此offset开始继续消费.
在consumter端配置文件中(或者是ConsumerConfig类参数)有个"autooffset.reset"(在kafka 0.8版本中为auto.offset.reset),有2个合法的值"largest"/"smallest",默认为"largest",此配置参数表示当此groupId下的消费者,在ZK中没有offset值时(比如新的groupId,或者是zk数据被清空),consumer应该从哪个offset开始消费.
1、largest表示接受接收最大的offset(即最新消息),
2、smallest表示最小offset,即从topic的开始位置消费所有消息.
*/
# socket的超时时间,实际的超时时间为max.fetch.wait + socket.timeout.ms.
socket.timeout.ms= 30 * 1000
# socket的接收缓存空间大小
socket.receive.buffer.bytes=64 * 1024
#从每个分区fetch的消息大小限制
fetch.message.max.bytes = 1024 * 1024
# true时,Consumer会在消费消息后将offset同步到zookeeper,这样当Consumer失败后,新的consumer就能从zookeeper获取最新的offset
auto.commit.enable = true ,项目里用false 不知道是什么原因
# 自动提交的时间间隔
auto.commit.interval.ms = 60 * 1000
# 用于消费的最大数量的消息块缓冲大小,每个块可以等同于fetch.message.max.bytes中数值
queued.max.message.chunks = 10
# 当有新的consumer加入到group时,将尝试reblance,将partitions的消费端迁移到新的consumer中, 该设置是尝试的次数
rebalance.max.retries = 4
# 每次reblance的时间间隔
rebalance.backoff.ms = 2000
# 每次重新选举leader的时间
refresh.leader.backoff.ms
# server发送到消费端的最小数据,若是不满足这个数值则会等待直到满足指定大小。默认为1表示立即接收。
fetch.min.bytes = 1
# 若是不满足fetch.min.bytes时,等待消费端请求的最长等待时间
fetch.wait.max.ms = 100
# 如果指定时间内没有新消息可用于消费,就抛出异常,默认-1表示不受限
consumer.timeout.ms = -1
#############################Producer#############################
# 核心的配置包括:
# metadata.broker.list
# request.required.acks
# producer.type
# serializer.class
# 消费者获取消息元信息(topics, partitions and replicas)的地址,配置格式是:host1:port1,host2:port2,也可以在外面设置一个vip
metadata.broker.list
#消息的确认模式
# 0:不保证消息的到达确认,只管发送,低延迟但是会出现消息的丢失,在某个server失败的情况下,有点像TCP
# 1:发送消息,并会等待leader 收到确认后,一定的可靠性
# -1:发送消息,等待leader收到确认,并进行复制操作后,才返回,最高的可靠性
request.required.acks = 0
# 消息发送的最长等待时间
request.timeout.ms = 10000
# socket的缓存大小
send.buffer.bytes=100*1024
# key的序列化方式,若是没有设置,同serializer.class
key.serializer.class
# 分区的策略,默认是取模
partitioner.class=kafka.producer.DefaultPartitioner
# 消息的压缩模式,默认是none,可以有gzip和snappy
compression.codec = none
# 可以针对默写特定的topic进行压缩
compressed.topics=null
# 消息发送失败后的重试次数
message.send.max.retries = 3
# 每次失败后的间隔时间
retry.backoff.ms = 100
# 生产者定时更新topic元信息的时间间隔 ,若是设置为0,那么会在每个消息发送后都去更新数据
topic.metadata.refresh.interval.ms = 600 * 1000
# 用户随意指定,但是不能重复,主要用于跟踪记录消息
client.id=""
# 异步模式下缓冲数据的最大时间。例如设置为100则会集合100ms内的消息后发送,这样会提高吞吐量,但是会增加消息发送的延时
queue.buffering.max.ms = 5000
# 异步模式下缓冲的最大消息数,同上
queue.buffering.max.messages = 10000
# 异步模式下,消息进入队列的等待时间。若是设置为0,则消息不等待,如果进入不了队列,则直接被抛弃
queue.enqueue.timeout.ms = -1
# 异步模式下,每次发送的消息数,当queue.buffering.max.messages或queue.buffering.max.ms满足条件之一时producer会触发发送。
batch.num.messages=200